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Service-oriented architecture represents a promising approach to integrating 

data and software across different institutional and disciplinary sources, thus 

facilitating Web-scale collaboration while avoiding the need to convert different 

data and software to common formats. The US National Cancer Institute’s 

Biomedical Information Grid program seeks to create both a service-oriented 

infrastructure (caGrid) and a suite of data and analytic services. Workflow 

tools in caGrid facilitate both the use and creation of services by accelerating 

service discovery, composition, and orchestration tasks. The authors present 

caGrid’s workflow requirements and explain how they met these requirements 

by adopting and extending the Taverna system. 

S ervice-oriented architecture (SOA) 
promises to evolve the Web from 
an information hub to a machine-

to-machine collaboration platform.1 In 
science, where rapid and accurate com-
munication is often vital to progress, 
adopting SOA approaches could bring 
about “service-oriented science.”2 Bio-
medical research is one field that’s ben-
efitted from Web-scale collaboration 
using SOA. (See the “Wrapping Bio-
medical Data as Services” sidebar.)

The effort to virtualize resources 
as services in service-oriented science 
can foster an ecosystem that facilitates 
scientific investigation in a Web-scale 
manner. However, a healthy service 
ecosystem requires more than interop-

erability: it needs users willing to both 
use existing services and develop and 
publish a steady stream of new ones. 
Thus, we require tools that facilitate 
service development, publication, dis-
covery, and composition. (We also re-
quire reward systems that encourage 
users to engage in these tasks, but that 
topic is beyond this article’s scope.)

Scientific workflows that compose 
and orchestrate services are an ap-
proach for meeting these two require-
ments and thus sustain the service 
ecosystem. First, scientists usually 
achieve scientific explorations through 
complex and distributed procedures. 
If scientific workflow tools help them 
discover services that meet their needs 
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and compose those services in a desired se-
quence with a lighter programming burden, 
they’ll be more willing to use this ecosystem. 
Second, user-created workflows that represent 
“best practices” for scientific experimentation 
can also be wrapped as services and published 
for others to use. This way, users not only con-
sume but also contribute to the system. 

The cancer Biomedical Informatics Grid 
(caBIG) program (https://cabig.nci.nih.gov/) is 
an example of this service-oriented effort in 
biomedical research. Sponsored by the US Na-
tional Cancer Institute (NCI), it was established 
to let scientists more efficiently share data to 
accelerate cancer research. caGrid (www.cagrid.
org), the service-based grid infrastructure for 
caBIG, is based on the Globus Toolkit 4.0 grid 
middleware.3 The caGrid infrastructure allows 
users to wrap a wide variety of cancer-research-
related data sources and analytical capabilities 
as services. Nearly 50 cancer centers and 30 
other organizations are working collaboratively 
on caBIG, and caGrid provides more than 68 
services. Thus, users must inevitably construct 
more complex experiment routines by compos-
ing multiple services as workflows. 

Here, we present the requirements for develop-
ing scientific workflows from caGrid and explain 
how we fulfill these requirements by leverag-
ing and enhancing software tools. The caGrid 
workflow encounters several challenges, so we 
selected a tool called Taverna (http://taverna. 

sourceforge.net/) as our solution. We’ve also cre-
ated a caGrid plug-in that extends Taverna with 
the ability to orchestrate caGrid services.

Challenges in Scientific Workflow
Service-oriented computing has brought tradi-
tional workflow technology to a Web-scale para-
digm.4 However, new challenges arise when we 
adopt workflows in scientific exploration, espe-
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Figure 1. Service ecosystem and scientific workflow in biomedical research. A service ecosystem consists of a medical 
service infrastructure and data, instruments, and computation resources as services. Scientific workflow involves service 
discovery, workflow composition, workflow execution, and result analysis.

Wrapping Biomedical Data as Services

In the main text, the left side of Figure 1 shows that not only data re-
sources (such as a DNA database, large molecular entities, medical 

images, clinical trial data, and ontology data) but also computational 
functions (protein structural analysis, gene comparison, and data visu-
alization) and even instruments (electron microscopes, oscillographs, 
CT scanners, and so on) can be wrapped as services that developers 
or users can then publish, discover, and access uniformly. Besides let-
ting developers create these individual services, a cyberinfrastructure 
gives users common facilities, such as service virtualization, connec-
tivity, and security. Thus, researchers can obtain data and computa-
tion from the Web instead of the lab and can undertake biomedical 
experiments at a Web scale. A UK-based survey identifies four major 
data centers and more than 20 smaller ones that collectively provide 
services implementing more than 3,000 data access and analysis op-
erations (see www.mygrid.org.uk/wiki/Mygrid/BiologicalWebServices). 
One major data center, the DNA data bank of Japan (www.ddbj.nig.
ac.jp/), now holds more than 87 million DNA entries and 91 billion 
nucleotide elements.



Data Stream Management

32 		  www.computer.org/internet/� IEEE INTERNET COMPUTING

cially in a Web-scale platform such as caGrid. 
Scientific workflow has been the subject of con-
siderable research, and researchers have devel-
oped and validated many systems.5 A caBIG team 
performed a comprehensive investigation com-
paring these systems, languages, and tools (see 
http://gforge.nci.nih.gov/docman/view.php/332/ 
7509/icr_workflow_tool_review_2007.doc). The 
team concluded that Taverna does a particularly 
good job of meeting caGrid’s workflow require-
ments in terms of its full life cycle (see Figure 
1). Other existing tools also have many desirable 
features, but here we’ll focus on Taverna. 

Taverna is an open source workflow work-
bench developed in the myGrid project (www.
mygrid.org.uk). Its goal is to facilitate the use of 
workflows and distributed resources within the 
e-science community. Taverna provides both a 
workflow-authoring tool that uses a proprietary 
definition language called Scufl, and an execu-
tion engine compliant with this language. It has 
built-in support for accessing many biologi-
cal databases and analytical services, such as 
Biomart (www.biomart.org) and Soaplab (www.
ebi.ac.uk/soaplab/). It also provides an exten-
sible framework that lets developers plug in ad-
ditional applications.

To validate the decision to choose Taverna, 
let’s look at some research challenges that occur 
in the life cycle of scientific workflows and the 
Taverna features that align with them. This life 
cycle has four stages: services discovery, work-
flow composition, workflow execution, and result 
analysis (Figure 1, right). We noticed that the ser-
vice interaction process (discovery, engagement, 
and enactment) proposed in the Semantic Web 
Service Architecture (SWSA)6 is a well-accepted 
one for Semantic Web services. The terms we use 
here come more from a scientific workflow per-
spective but can be aligned with SWSA terms.

During these four stages, scientist can great-
ly benefit from community experience through 
which they can share data, services, workflows, 
and the knowledge obtained by doing experi-
ments. Taverna also has a sister project called 
myExperiment (www.myexperiment.org) — a 
Web 2.0 community for workflow sharing. For 
these reasons, we selected Taverna as the work-
flow “backbone” in caGrid. 

Discovery 
Choosing which service to use might be trivial 
in business workflows because most participant 

services are either homemade or outsourced via 
contracts. However, scientific workflows exist 
in a Web-scale ecosystem in which many orga-
nizations provide many services. Users might 
not know these services’ URLs or even their 
functions and semantics: because the scientific 
community is too autonomous to share a com-
mon terminology, without domain knowledge 
it’s impossible to determine a service’s exact se-
mantics using its syntax. A service ecosystem 
must establish an agreed-on vocabulary and 
use it to annotate services, so that users can 
discover them with less ambiguity. Taverna has 
an extension point (or scavenger) to aid custom-
ized service discovery. We’ll discuss this more 
in the next section. 

Composition
In this step, workflow developers compose indi-
vidual services into a workflow that describes the 
experiment scientists will undertake. Developers 
might add data and control dependencies among 
services, or they might transform data if one 
service’s output isn’t in the format required for 
another service’s input. Developers can perform 
composition using general-purpose program-
ming languages such as Java, scripting notations 
such as Swift or DAGMan, or even GUIs more 
desirable to scientists in a given domain.

Whereas business processes consist of com-
plex control logic, scientific workflows are 
more focused on parallel data flow. In a data 
flow, tasks and links represent data processing 
and data transport, respectively. Tasks without 
data dependencies between them can execute 
in parallel. Taverna’s modeling style fits in this 
dataflow-oriented flavor, which the caGrid com-
munity welcomes.

Execution
At runtime, a workflow engine invokes services 
in a predefined order, providing their input and 
retrieving their output during the ordered exe-
cution. An engine for scientific workflows should 
be aware of the data and computation resources 
that it can leverage and, ideally, will plan the 
execution to optimize some performance index, 
such as execution time or throughput. 

Taverna provides a functional model, called 
implicit iteration, to ease parallel execution. At 
runtime, implicit iteration occurs if a proces-
sor receives more inputs than it expects. This 
capability is useful when workflow designers 
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can’t estimate inputs’ cardinality at build-time, 
which often happens in caGrid workflows. In 
contrast, in an imperative language such as the 
Web Service Business Process Execution Lan-
guage (WS-BPEL),7 you’d have to add <while> 
or <forEach> constructs explicitly for iteration.

Analysis
Scientists create and execute workflows in sup-
port of exploratory research. Component ser-
vices generate intermediate results, and the 
workflow yields final results; these results are 
of great value and should be stored for later 
analysis. Taverna gives each intermediate and 
final data item a unique identifier and stores 
them properly. Its extension framework lets us-
ers add customized functions such as data visu-
alization, tracking, and querying.

Scientific Workflow in caGrid
Globus-based caGrid services are Web services 
invoked by SOAP, with WSDL-defined inter-
faces. Globus implements two sets of Web ser-
vices features that are particularly important 
for Web-scale computing: access to stateful re-
sources and secure access. 

In scientific computing, users want to access 
and manipulate state in service interactions. 
For example, scientists might submit a job to a 
scheduler and want to query the state of this 
specific job instance or get state notification 
when the job completes (note that the scheduler 
contains multiple job instances). The Web Ser-
vice Resource Framework (WSRF)8 specification 
lets service clients access stateful resources. A 
resource-generation operation ( job submission, 
for example) creates a new resource instance 

1: newScavenger()

2: query()

3: service list

5: newProcessor()

8: invoke()

6: wsrfConfig()

7: securityConfig()

9: enforceWSRF()

10: enforceSecurity()

11: call()

12: soap rsponse
13: execution result

4: getProcessorList()

Taverna Workbench caGrid Scavenger caGrid Processor caGrid TaskWorker caGrid Service caGrid Index Service

Figure 2. Interaction between Taverna and caGrid plug-in components. The Taverna workbench queries services from 
Scavenger, configures Globus extensions in the Processor, and invokes services through TaskWorker.
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and returns an element called ReferencePro-
perties that identifies this instance. Resource-
access operations (such as job state query) can 
simply launch a SOAP invocation as normal and 
insert the ReferenceProperties into the SOAP 
header to access a specific resource instance, or 
query resource states (called resource properties 
in WSRF).

In Web-scale scientific collaboration, se-
cure communication is important for protect-
ing resources across organizational boundaries. 
The Grid Security Infrastructure (GSI)9 is a 
set of components in the Globus Toolkit that 
provides security features. It uses public-key 
cryptography to offer functions such as secure 
encryption, authentication (identifying the 
caller/sender), authorization (checking access 
rights), and delegation (performing a task on a 
delegator’s behalf). 

Our caGrid plug-in for Taverna had certain 
requirements. It must 

make Taverna aware of caGrid services, so 
that caGrid users can choose available ser-
vices they’ll later orchestrate using Taverna;
configure services at build-time with caGrid 
properties, such as a resource identifier and 
security, if needed; and
receive instruction from the Taverna engine 
at runtime to invoke caGrid services with a 
possible Globus extension.

We extended three interfaces in Taverna 
— the Scavenger, Processor, and TaskWorker 
— to integrate it into caGrid. As we mentioned 
earlier, a scavenger contains a customized ser-

•

•

•

vices query and the query’s result — that is, a 
collection of processors. A processor contains 
the build-time information for a single step in-
side a Taverna workflow. Each processor cor-
responds to a TaskWorker interface, which 
defines the action the processor will perform at 
runtime. Figure 2 shows interactions between 
Taverna and the components in the caGrid plug-
in, which we’ll now look at in some detail. 

Metadata-Based Service Query
In step 1 (see Figure 2), a user first initiates a 
service query through the Taverna workbench 
(newScavenger()). The caGrid Scavenger per-
forms this query against service metadata 
stored as resource properties of the caGrid in-
dex service, which leverages the caGrid service 
metadata definition that Figure 3 illustrates. 
The HostingResearchCenter hosts a service, 
which might have several PointsOfContact. 
Its ServiceContext contains a list of Opera-
tions; each operation has a list of InputParam-
eters and an Output, both of whose data types 
can be defined via UMLClasses. caGrid service 
metadata annotates Service, Operation, and 
UMLClass with SemanticMetadata. caGrid has 
defined a common vocabulary for UMLClass and 
SemanticMetadata, which users can leverage 
for semantic-based querying.

The caGrid plug-in provides three querying 
methods:

string based, which lets users locate services 
related to “pathology,” for example;
property based, which, for instance, locates 
services hosted by “Ohio State University” 

•

•

HostingResearchCenter PointOfContact

Service ServiceContext Operation

hostingResearchCenter

 1...*

 1...*
 1...*  0...*

 0...*

 0...*

 0...1
 0...1

 0...*

 0...1

1...*
Service

1

1

1

1

Output

Output
1

service
Service

PointofContactCollection
0...1

InputParameter

UMLClass

umlClass

umlClass

umlClass

inputParameter

1serviceContextCollection1

SemanticMetadata

semanticMetadataCollection

-conceptCode:string
-conceptName:string
-conceptDefinition:string

11

semanticMetadataCollection

Figure 3. caGrid service metadata for service discovery. Users can query caGrid services using these metadata.
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with the name DICOMDataService and the 
operation PullOp; and 
semantic based, which locates services, for 
example, that are semantically annotated as 
Core Grid Service.

We can combine these three methods to form 
complex queries. Looking at Figure 2, we can 
see that the caGrid Scavenger turns user que-
ries into XPath clauses and sends them to a 
caGrid index to get a list of  services (query() 
and service list). The workbench displays 
this service list (getProcessorList()) for users 
to choose.

caGrid Configuration:  
State Management and Security
After the service query, Taverna populates the 
workbench with a list of processors that us-
ers can add to build a new workflow (step 5 in 
Figure 2, newProcessor()). For Globus-specific 
extensions, (step 6, or wsrfConfig()), users 
configure ReferenceProperties for processors 
by linking resource-generation processors to 
resource-access processors. In step 7, security-
Config(), users configure security for proces-
sors, specifying, for example, which certificate 
and which encryption method to use.

caGrid Service Invocation
At runtime, when the workflow execution reach-
es a certain processor, Taverna creates a Task-
Worker class that fetches the input data from the 
workbench and wraps them into a SOAP mes-
sage body. After that, TaskWorker inspects the 
WSRF and security configuration the processor 
created and enforces these configurations by 
changing the SOAP body and the header accord-
ingly (enforceWSRF() and enforceSecurity()). 
Then, TaskWorker sends the SOAP message out 
for service invocation (call()) and obtains a 
response (soap response). The workbench dis-
plays the returned results (execution result).

You can download the caGrid plug-in from 
www-unix.mcs.anl.gov/~madduri/taverna/ and 
install it in Taverna (1.7.1.0 or a more recent re-
lease). We’ve tested it with several caGrid work-
flows, one of which we describe next.

Microarray Clustering Workflow: 
A Case Study
To illustrate our caGrid plug-in’s application, we 
tested it with a microarray hierarchical cluster-

•

ing workflow that involves services hosted at 
multiple institutions. 

Microarrays are a high-throughput technol-
ogy used to measure the expression of tens of 
thousands of genes in different tissues or cells. 
Scientists represent the data from each micro-
array via a vector (profile) in which each ele-
ment represents a gene’s expression level. They 
use clustering analysis to identify similar ex-
pression profiles across genes or samples.10 In 
particular, hierarchical clustering is popular 
for grouping microarrays into a multilevel hi-
erarchy in which, at each level, arrays in the 
same cluster are more similar to each other 
than those in different clusters. To cluster data, 
the user must identify and retrieve relevant mi-
croarrays, preprocess them, and then invoke the 
hierarchical clustering program. In the past, we 
might have programmed this sequence of steps 
using a scripting language such as Perl. Instead, 
we use Taverna and the caGrid plug-in to iden-
tify relevant services, compose those services 
with additional building blocks (for data trans-
formation), and orchestrate their execution. Our 
workflow involves three major steps:

Identify and retrieve the microarray data of 
interest. We used CQL, the query language 
that caGrid Data Services uses, to specify 
this data and retrieve it from a caArray 
data service hosted at Columbia University 
(http://cagridnode.c2b2.columbia.edu:8080/
wsrf/services/cagrid/ CaArrayScrub).
Preprocess, or normalize, the microarray data 
before clustering them. We used a GenePattern 
analytical service (http://node255.broad.mit.
edu:6060/wsrf/services/cagrid/Preprocess 
Dataset MAGEService), which provides nor-
malization, floor and ceiling thresholding, 
variation filtering, and other preprocessing 
functions. We used an instance of this ser-
vice hosted at MIT’s Broad Institute.
Run hierarchical clustering on the prepro-
cessed data. We invoked the geWorkbench 
analytical service Columbia University 
hosts (http://cagridnode.c2b2.columbia.edu: 
8080/wsrf/ser v ices/cagr id/Hierarchical 
ClusteringMage).

Figure 4 illustrates the Taverna workflow. It 
contains an input processor to store the CQL ex-
pression, an output processor to store the clus-
tered microarray data (both input and output 

1.

2.

3.
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processors are blue), three caGrid processors 
(green) representing the three caGrid services 
just listed, and a few “shim” processors, such 
as XML splitters and beanshell scripts, to deal 
with data transformation between services.

Once we’ve created our workflow, we can use 
Taverna to execute it, monitor its execution, and 
examine both its output and the data it produces 
at intermediate steps. Figure 5 shows the execu-
tion trace (bottom left) and the execution result 
(right), which, in this case, is an XML document 
representing the hierarchically clustered arrays. 

Compared to our approach, traditional ap-
proaches based on, for example, Perl script-
ing are more time-consuming and error-prone. 
Moreover, they can’t handle Web-scale spe-
cific issues, such as services that aren’t visible 
or understandable to users or services that are 
volatile. In contrast, with our plug-in, we can 
discover caGrid services using domain meta-
data, compose, execute, and monitor workflows 
in a visualized manner. Overall, we believe that 
Taverna offers many desirable features with lit-
tle programming effort.

T he work we’ve described here is a first step 
toward providing a comprehensive and easy-

to-use workflow suite that extends scientific in-
vestigations to Web scale. Future work, which 
we’re pursuing with the Taverna team, includes 
providing more comprehensive security support 

and optimizing dataflow execution. For exam-
ple, we plan to improve performance for large 
data sets using tools such as GridFTP to direct-
ly transfer data between processors instead of 
through the workflow engine.

We believe that the solution and experience 
we present here are applicable to other applica-
tion scenarios in related disciplines. We’re work-
ing to apply the same methods to other domains 
of experimental and simulation science.�
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